Welcome to Nanalysis’ benchtop NMR Blog

We love benchtop NMR! In this blog section, you will find all things benchtop NMR. Please contact us if you would like to discuss about your project.

Educational Alexander Köring Educational Alexander Köring

How does the lock work?

Magnets used to manufacture low-field and high-field NMR spectrometers are not perfect and the magnetic field that they generate is prone to drift for a variety of reasons. However, during an NMR experiment it is important to keep the magnetic field as stable as possible to prevent the signals from drifting. This is taken care of by the lock system.

Read More
Educational Thais Barbosa Educational Thais Barbosa

Origin of Chemical Shifts

It is common to mention the frequency of an NMR instrument instead of its field. When someone says: I have in my laboratory a 100 MHz instrument, it means that a spectrometer where the protons precess with a frequency of 100 MHz (Lamour frequency) is available in the lab…

Read More
Educational Susie Riegel Educational Susie Riegel

DEPT: A tool for 13C peak assignments

Distortionless Enhancement by Polarization Transfer (DEPT) is a double resonance pulse program that transfers polarization from an excited nucleus to another – most commonly 1H → 13C. This results in a sensitivity enhancement relative to the standard decoupled 1D carbon spectra (13C), which benefits only from the small Nuclear Overhauser Effect (NOE) enhancements.

Read More
Educational Thais Barbosa Educational Thais Barbosa

Why does NMR have an inherently low sensitivity?

It is well known that NMR analysis requires a higher concentration of analyte than any other spectroscopic method. For example, UV-Vis requires an analyte concentration range of only nM to µM, while NMR typically requires the analyte to be in the mM range (>1000 times more concentrated!). In this blog, we will demonstrate why NMR is considerably less sensitive than UV-Vis. We have chosen UV-Vis for this comparison as it is widely recognized as one of the most sensitive spectroscopic techniques.

Read More
Educational Godfrey Wills Educational Godfrey Wills

Using NMR to observe the restricted rotation in amide bonds

NMR is a great tool for the analysis of molecular properties such as the amide bond, which has a restricted rotation around the C–N bond. In Biochemistry, the amide bond is referred to as the peptide bond. This bond is formed by the union of a carboxyl group of one amino acid with the amino group of another amino acid. Read more.

Read More
Educational Juan Araneda Educational Juan Araneda

What to expect: Chemical Shifts & Coupling Constants in Low-field NMR Spectroscopy

One of the questions that we always get at tradeshows and conferences is how our instrument compares to high-field data. There are significant inherent differences between low-field and high-field instruments, but the most important from a chemistry point of view are sensitivity (S/N) and resonance dispersion (signal separation). Read More.

Read More