Welcome to Nanalysis’ benchtop NMR Blog

We love benchtop NMR! In this blog section, you will find all things benchtop NMR. Please contact us if you would like to discuss about your project.

Industry, Educational James Grebinski Industry, Educational James Grebinski

To D2O or not to D2O?

In the average case one can simply dissolve an analyte in an appropriate deuterated solvent and acquire a simple 1D spectrum to obtain all the required structural information. However, sometimes doing so may not provide you with all of the information you need!

Read More
Educational Juan Araneda Educational Juan Araneda

What to expect: Chemical Shifts & Coupling Constants in Low-field NMR Spectroscopy

One of the questions that we always get at tradeshows and conferences is how our instrument compares to high-field data. There are significant inherent differences between low-field and high-field instruments, but the most important from a chemistry point of view are sensitivity (S/N) and resonance dispersion (signal separation). Read More.

Read More
Academic Juan Araneda Academic Juan Araneda

Life is sweet….maybe too sweet!

Sugar substitutes are gaining more and more relevance due to the health problems associated with the consumption of high amounts of sugar...I thought it would be interesting to take a few of those substitutes and acquire their proton NMR spectrum in our benchtop NMR.

Read More
Industry, Educational Tobias Boehringer Industry, Educational Tobias Boehringer

Process-NMR – Future key elements in the world of Process Analytical Technology (PAT)

What is process analytical technology (PAT) and why is it so important?PAT is an extremely powerful and useful tool for analyzing, optimizing and controlling chemical processes. Chemical, food and pharmaceutical industries could especially benefit from this technique. In earlier days, chemical processes were primarily monitored by physical techniques, such as temperature, pH, pressure etc..

Read More
Matt Zamora Matt Zamora

The Dangers of Making Too Many Assumptions. Electronegativity, Acidity, and Chemical Shift

Last month (which you can see here), we learned about how an acidic proton behaves in a 1H NMR experiment, particularly when it’s surrounded by D2O. For example, when an H+ leaves CH3COOH to join an accommodating D2O molecule, the resulting acetate (H3CCOO–) segment is reasonably comfortable bearing that negative charge. This phenomenon is the reason the solution is “acidic” in the first place. But why is acetate so capable of dealing with this negative electronic charge?

Read More