2D NMR experiments provide chemists with evidence to clarify and confirm resonance assignment. Nowadays every organic chemist uses these experiments called COSY, HMBC and HSQC as routine analytics. Basically, with 2D experiments you correlate some kind of information between two 1D spectra. If we correlate two 1D spectra of the same nucleus we are dealing with homonuclear 2D NMR experiments. The most famous representative of this group is the COSY experiment (find theory here and application here). Whereas, if we correlate 1D spectra of different nuclei, we call this heteronuclear 2D NMR correlation. One of the first heteronuclear 2D experiments invented was the HETCOR, a carbon detected experiment that was largely replaced by the HSQC (Heteronuclear Single Quantum Correlation) experiment. This provides the same information, but it is proton detected so you get that information faster! If you perform an 1H,13C-HSQC you will find the 1JCH couplings, which means that the HSQC reveals which proton is directly bond to which carbon. Pretty useful, right?
Like every other 2D NMR pulse sequence the one used for HSQC consists of three parts (figure 1). Preparation, evolution (t1) and mixing. Subsequent to those we have the acquisition time (t2) in which the FID is detected. If you’ve dealt with other pulse sequences before, you might recognise the INEPT sequence (90-180-90 on one, 180-90 on the other channel) in the beginning of this pulse program. This is the preparation phase. The evolution takes place on the 13C spins while an 180° pulse is only applied on the 1H channel. In the mixing period, there is another spin echo sequence which transfers the evolved information back to 1H and is detected on this channel. For historic reasons, this is called an ‘inverse’ correlation. The advantage is, that we detect the signal on the more sensitive proton channel. If you want to know more about the pulse program, I can highly recommend Dr. James Keeler’s ‘Understanding NMR Spectroscopy’[1] to you. This is the source, I gained most of my knowledge about pulse programs.