Welcome to Nanalysis’ benchtop NMR Blog

We love benchtop NMR! In this blog section, you will find all things benchtop NMR. Please contact us if you would like to discuss about your project.

Educational Thais Barbosa Educational Thais Barbosa

Part 1 - T1 relaxation: definition, measurement and practical implications!

Nuclear Magnetic Resonance spectroscopy is based on the idea that some nuclei can behave as little magnetic bars (I spin number ≠ 0). In the presence of a magnetic field (B0) the nuclear spins feel a small torque for or against the B0 axis, which results in a net magnetization along the B0 direction. Benchtop NMR 1-855-NMREADY (667-3239) toll-free in the US and Canada.

Read More
Educational Eva Lam Educational Eva Lam

DEPT: A tool for 13C peak assignments

Distortionless Enhancement by Polarization Transfer (DEPT) is a double resonance pulse program that transfers polarization from an excited nucleus to another – most commonly 1H → 13C. This results in a sensitivity enhancement relative to the standard decoupled 1D carbon spectra (13C), which benefits only from the small Nuclear Overhauser Effect (NOE) enhancements.

Read More
Educational Thais Barbosa Educational Thais Barbosa

Part 1 - T1 relaxation: definition, measurement and practical implications!

Nuclear Magnetic Resonance spectroscopy is based on the idea that some nuclei can behave as little magnetic bars (I spin number ≠ 0). In the presence of a magnetic field (B0) the nuclear spins feel a small torque for or against the B0 axis, which results in a net magnetization along the B0 direction. Benchtop NMR 1-855-NMREADY (667-3239) toll-free in the US and Canada.

Read More
Educational Eva Lam Educational Eva Lam

DEPT: A tool for 13C peak assignments

Distortionless Enhancement by Polarization Transfer (DEPT) is a double resonance pulse program that transfers polarization from an excited nucleus to another – most commonly 1H → 13C. This results in a sensitivity enhancement relative to the standard decoupled 1D carbon spectra (13C), which benefits only from the small Nuclear Overhauser Effect (NOE) enhancements.

Read More